Visual Function and Cortical Organization in Carriers of Blue Cone Monochromacy
نویسندگان
چکیده
Carriers of blue cone monochromacy have fewer cone photoreceptors than normal. Here we examine how this disruption at the level of the retina affects visual function and cortical organization in these individuals. Visual resolution and contrast sensitivity was measured at the preferred retinal locus of fixation and visual resolution was tested at two eccentric locations (2.5° and 8°) with spectacle correction only. Adaptive optics corrected resolution acuity and cone spacing were simultaneously measured at several locations within the central fovea with adaptive optics scanning laser ophthalmoscopy (AOSLO). Fixation stability was assessed by extracting eye motion data from AOSLO videos. Retinotopic mapping using fMRI was carried out to estimate the area of early cortical regions, including that of the foveal confluence. Without adaptive optics correction, BCM carriers appeared to have normal visual function, with normal contrast sensitivity and visual resolution, but with AO-correction, visual resolution was significantly worse than normal. This resolution deficit is not explained by cone loss alone and is suggestive of an associated loss of retinal ganglion cells. However, despite evidence suggesting a reduction in the number of retinal ganglion cells, retinotopic mapping showed no reduction in the cortical area of the foveal confluence. These results suggest that ganglion cell density may not govern the foveal overrepresentation in the cortex. We propose that it is not the number of afferents, but rather the content of the information relayed to the cortex from the retina across the visual field that governs cortical magnification, as under normal viewing conditions this information is similar in both BCM carriers and normal controls.
منابع مشابه
Deletion of the X-linked opsin gene array locus control region (LCR) results in disruption of the cone mosaic
Blue cone monochromacy (BCM) is an X-linked condition in which long- (L) and middle- (M) wavelength-sensitive cone function is absent. Due to the X-linked nature of the condition, female carriers are spared from a full manifestation of the associated defects but can show visual symptoms, including abnormal cone electroretinograms. Here we imaged the cone mosaic in four females carrying an L/M a...
متن کاملHuman L- and M-opsins restore M-cone function in a mouse model for human blue cone monochromacy
Purpose Blue cone monochromacy (BCM) is an X-linked congenital vision disorder characterized by complete loss or severely reduced L- and M-cone function. Patients with BCM display poor visual acuity, severely impaired color discrimination, myopia, nystagmus, and minimally detectable cone-mediated electroretinogram. Recent studies of patients with BCM with adaptive optics scanning laser ophthalm...
متن کاملCharacterization of a novel form of X-linked incomplete achromatopsia.
X-linked incomplete achromatopsia (XIA), also called blue-cone monochromacy (BCM), is a rare cone disorder that most commonly results either from one of two conditions. The first condition is a deletion of the locus control region (LCR) which is a critical DNA element that lies upstream of the L and M photopigment gene array on the X-chromosome and is necessary for expression of the photopigmen...
متن کاملFor whales and seals the ocean is not blue: a visual pigment loss in marine mammals.
Most terrestrial mammals have colour vision based on two spectrally different visual pigments located in two types of retinal cone photoreceptors, i.e. they are cone dichromats with long-to-middle-wave-sensitive (commonly green) L-cones and short-wave-sensitive (commonly blue) S-cones. With visual pigment-specific antibodies, we here demonstrate an absence of S-cones in the retinae of all whale...
متن کاملBlue Cone Monochromacy Causes Deterioration in Visual Acuity and Color Vision in a Boy
Purpose: To present the genetic cause of progressive deterioration in visual acuity and color vision in a child with high myopia and strabismus. Here we describe a novel x-linked mutation in the opsin 1 medium-wave-sensitive (OPN1MW) gene in a child, leading to cone rod dystrophy. Setting/Venue: Trio whole-exome sequencing (WES). Methods: We reviewed the clinical data and eye exams including fa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013